II B.Tech - I Semester - Regular Examinations - MARCH 2021

SIGNALS AND SYSTEMS
 (Common for ECE \& EEE)

Duration: 3 hours
Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) Calculate the even and odd components of the following signal $x(t)=\cos t+\sin t+\cos t \sin t$
b) Calculate the energy of the following signal

$$
x(t)=10 \cos 5 t \cos 10 t
$$

c) Define Region of Convergence. Also state any two properties of Region of convergence with respect to Laplace Transform.
d) Compute the DTFT of $\mathrm{x}[\mathrm{n}]=(1 / 4)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$
e) What are Dirchlet's conditions? State them with respect to Fourier Transform.

PART - B

UNIT - I
2.
a) Find whether the following signals are periodic or not. If a signal is periodic, determine its fundamental period
i) $x[n]=\sin 2 \pi n+\sin 6 \pi n$
ii) $x[n]=e^{j \frac{\pi}{4} n}$
b) Calculate the even and odd components of the signal $\mathrm{x}(\mathrm{t})$

OR

3. a) A continuous-time signal $x(t)$ is shown in Fig. Sketch and label each of the following signals.
i) $-2 x(2 t-3)$
ii) $3 x(-3 t+2)$

b) Check the Linearity, Static/Dynamic nature, Time variance/invariance, Causality of the system defined by differential equation
$\frac{d^{3}}{d t^{3}} \mathrm{y}(\mathrm{t})+2 \frac{d^{2}}{d t^{2}} \mathrm{y}(\mathrm{t})+4 \frac{d}{d t} \mathrm{y}(\mathrm{t})+3 y^{2}(\mathrm{t})=\mathrm{x}(\mathrm{t}+1)$
UNIT - II
4. a) An LTI system is characterized by $h(n)=(3 / 4)^{n} u(n)$.

Compute the output of the system at time $n=5,-5,10$ when input $x(n)=u(n)$.
b) Evaluate the graphical convolution of two signals $x(\mathrm{t})$ and $h(t)$ given below

OR
5. a) List and state the properties of Convolution Integral.
b) Two LTI systems that are cascaded have impulse responses $\mathrm{h}_{1}[\mathrm{n}]=[4,2,1,3]$ and $\mathrm{h}_{2}[\mathrm{n}]=[1,2,2,1]$. Calculate the impulse response of the overall system.

UNIT-III

6. a) Find the Fourier transform of a train of impulses of unit 6 M height separated by T sec.
b) Evaluate the exponential Fourier Series of the following 6 M signal and also draw magnitude and Phase spectrum.

OR
7. Evaluate the exponential Fourier Series of the following signal and also draw magnitude and Phase spectrum.

UNIT - IV

8. a) Sketch the magnitude and Phase response of the system with difference equation

$$
\mathrm{y}(\mathrm{n})=0.5 \mathrm{x}(\mathrm{n})+0.5 \mathrm{x}(\mathrm{n}-1)
$$

b) State and prove the following properties of DTFT:
i) Time Convolution
ii) Parseval's Relation

OR

9. a) Determine the impulse response of the system described by the difference equation $\mathrm{y}(\mathrm{n})=0.7 \mathrm{y}(\mathrm{n}-1)-0.1 \mathrm{y}(\mathrm{n}-2)+2 \mathrm{x}(\mathrm{n})-\mathrm{x}(\mathrm{n}-2)$
b) Find the DTFT of the following discrete time sequences:
i) $\quad \mathrm{x}(\mathrm{n})=\{1,-2,2,3\}$
ii) $\quad \mathrm{x}(\mathrm{n})=\delta(\mathrm{n}+3)-\delta(\mathrm{n}-3)$
10. a) Calculate all possible $\frac{\text { UNIT }-\mathbf{V}}{\text { ROC conditions }}$
Laplace Transforms of

$$
x(s)=\frac{s^{2}+2 s+5}{(s+3)(s+5)^{2}}
$$

b) Determine the Z-Transform and ROC of following sequence:
$x(n)=a^{n} u(n)-b^{n} u(-n-1)$

OR

11. a) Find the inverse Z-Transform of $X(z)=\frac{z}{(z-1)(z-2)^{2}} \quad|z|<2$
using partial fraction expansion.
b) State and prove the time convolution property of Laplace Transform.
