II B.Tech - I Semester – Regular Examinations – MARCH 2021

SIGNALS AND SYSTEMS

(Common for ECE & EEE)

Duration :	3 hours	
-------------------	---------	--

Max. Marks: 70

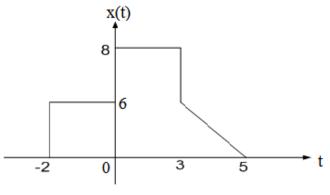
Note: 1. This question paper contains two Parts A and B.

- Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place

PART – A

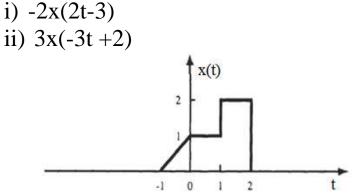
- 1. a) Calculate the even and odd components of the following signal $x(t) = \cos t + \sin t + \cos t \sin t$
 - b) Calculate the energy of the following signal

 $x(t) = 10\cos 5t\cos 10t$


- c) Define Region of Convergence. Also state any two properties of Region of convergence with respect to Laplace Transform.
- d) Compute the DTFT of $x[n] = (1/4)^n u[n]$
- e) What are Dirchlet's conditions? State them with respect to Fourier Transform.

PART – B

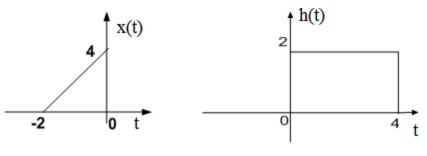
<u>UNIT – I</u>


- 2. a) Find whether the following signals are periodic or not.6 MIf a signal is periodic, determine its fundamental period
 - i) $x[n] = \sin 2\pi n + \sin 6\pi n$
 - ii) $x[n] = e^{j\frac{\pi}{4}n}$

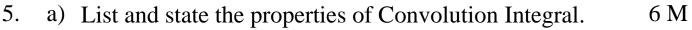
b) Calculate the even and odd components of the signal 6 M x(t)

OR

3. a) A continuous-time signal x(t) is shown in Fig. Sketch 8 M and label each of the following signals.

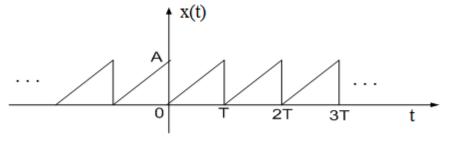


b) Check the Linearity, Static/Dynamic nature, Time 4 M variance/invariance, Causality of the system defined by differential equation

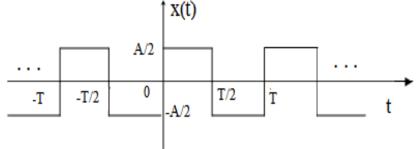

$$\frac{d^{3}}{dt^{3}}y(t) + 2\frac{d^{2}}{dt^{2}}y(t) + 4\frac{d}{dt}y(t) + 3y^{2}(t) = x(t+1)$$

<u>UNIT – II</u>

- 4. a) An LTI system is characterized by $h(n)=(3/4)^n u(n)$. 6 M Compute the output of the system at time n = 5, -5, 10when input x(n) = u(n).
 - b) Evaluate the graphical convolution of two signals x(t) = 6 M and h(t) given below


OR

b) Two LTI systems that are cascaded have impulse 6 Mresponses $h_1[n] = [4, 2, 1, 3]$ and $h_2[n] = [1, 2, 2, 1]$. Calculate the impulse response of the overall system.


UNIT-III

- 6. a) Find the Fourier transform of a train of impulses of unit 6 M height separated by T sec.
 - b) Evaluate the exponential Fourier Series of the following 6 M signal and also draw magnitude and Phase spectrum.

OR

Evaluate the exponential Fourier Series of the following 12 M signal and also draw magnitude and Phase spectrum.

$\underline{UNIT - IV}$

		$\underline{ONII} = IV$	
8.	a)	Sketch the magnitude and Phase response of the	6 M
		system with difference equation	
		y(n) = 0.5x(n) + 0.5x(n-1)	
	b)	State and prove the following properties of DTFT:	6 M
		i) Time Convolution	
		ii) Parseval's Relation	
		OR	
9.	a)	Determine the impulse response of the system	6 M
		described by the difference equation	
		y(n) = 0.7y(n-1) - 0.1y(n-2) + 2x(n) - x(n-2)	
	b)	Find the DTFT of the following discrete time	6 M
		sequences:	
		i) $x(n) = \{1, -2, 2, 3\}$	
		ii) $x(n) = \delta(n+3) - \delta(n-3)$	
$\underline{\mathbf{UNIT}} - \mathbf{V}$			
10.	a)	Calculate all possible ROC conditions of Inverse	6 M
	Laplace Transforms of		
		$X(S) = \frac{S^{2} + 2S + 5}{(S+3)(S+5)^{2}}$	
		$\left(S+3\right)\left(S+5\right)^2$	
	b)	Determine the Z-Transform and ROC of following	6 M
		sequence:	
		$x(n) = a^{n}u(n) - b^{n}u(-n-1)$	
		OR	
11.	a)	Find the inverse Z-Transform of	6 M
		$X(z) = \frac{z}{(z-1)(z-2)^2} z < 2$	
	1 \	using partial fraction expansion.	
	b)	State and prove the time convolution property of	6 M
		Laplace Transform.	